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Abstract--I t  has been demonstrated experimentally and theoretically that the dispersion coefficients of  
non-fluid particles in isotropic turbulent flows can exceed the dispersion coefficient of  fluid particles. This 
"inertia effect" cannot be allowed for in eddy interaction models in which it has been shown that the 
long-time dispersion coefficient of non-fluid particles is always less than that of fluid particles. In the limit 
of infinitely heavy particles, the difference between the dispersion coefficients is due to the difference 
between the Lagrangian and Eulerian integral time scales ZL and ZE and it can be shown that z E < z L in 
existent eddy interaction models. In this paper, the relationship between T E and z L is investigated for a 
modified eddy interaction model for which it is possible that ZE > TL, which will lead to greater long-time 
dispersion of  heavy non-fluid particles than of  fluid particles. Numerical simulations are carried out to 
quantify the effect of  the modifications on the dispersion of  finite size particles. 
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1. I N T R O D U C T I O N  

The eddy interaction model for particle dispersion in turbulent flows was first used by Hutchinson 
et al. (1971) to model unidirectional particle dispersion in turbulent pipe flows. Several authors 
(Gosman & Ioannides 1981; Shuen et al. 1983, for example) have since developed the method, 
enabling its use in more complex turbulent flows. The model uses a stochastic approach to predict 
the characteristics of the discrete phase in dispersed two-phase flows. Each of a number of 
individual particles is tracked through a series of interactions with fluid eddies whose length, 
"lifetime" and velocity can all be random variables. The "crossing trajectory effect" (Yudine 1959), 
whereby particle dispersion is reduced in the presence of strong body forces due to particles rapidly 
passing through eddies, is allowed for by specifying that a new eddy be entered once the distance 
between a particle and the centre of an individual eddy exceeds the eddy length. 

In the model, the finite eddy length also influences the "inertia effect". Graham & James (1996) 
showed that, under the assumption that the drag on non-fluid particles is Stokesian, the eddy 
interaction model always predicts that heavy non-fluid particles will be dispersed less rapidly, in 
the long-time limit, than fluid particles. This was demonstrated to be the case whether or not 
random eddy lifetimes and eddy lengths were used in addition to the usual random eddy velocities. 
However, as discussed below, there is evidence that the dispersion coefficient for very heavy 
particles should in fact exceed that for fluid particles. The purpose of this paper is to investigate 
the possibility that eddy interaction models can be modified to predict the enhanced dispersion of 
non-fluid particles by comparing Eulerian and Lagrangian fluid velocity auto-correlations and 
integral time scales for a modified eddy interaction model. 

It can be shown that, in homogeneous isotropic and stationary turbulence in which the 
turbulence intensity is equal to u', and assuming that Stokesian drag is the only force acting on 
a particle, the long-time dispersion coefficient of non-fluid particles is given by 

/)p = u '2 RF(z ) dz = u'EzF [1] 
do 

where RF(z ) is the fluid velocity auto-correlation following the path of a non-fluid particle and zF 
is the corresponding integral time scale of the fluid motion. In the limiting case of infinitely heavy 
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particles, RF(z) is a correlation of velocities at a fixed point, i.e. an Eulerian fluid velocity 
auto-correlation. In this case, zF is equal to the Eulerian integral time scale, rE. The dispersion of 
very heavy particles is thus dependent upon this Eulerian integral time scale. In the limiting case 
of fluid particles, RF(r) is a correlation of velocities following fluid particles, i.e. the Lagrangian 
auto-correlation. In this case, rF is equal to the Lagrangian integral time scale, rE. 

Reeks (1977) and Pismen & Nir (1978) have developed theories which predict that very heavy 
particles disperse more rapidly, in the long term, than fluid particles. The experiments of Wells & 
Stock (1983), the direct numerical simulations of Squires & Eaton 1991 and the large eddy 
simulations of  Deutsch (1992) (reported by Minier & Pozorski 1992), all indicate the possibility 
that the dispersion coefficient for heavy particles exceeds that for fluid particles. It is therefore 
important that models used to simulate dispersion of non-fluid particles are flexible enough to allow 
for this inertia effect. It is the question of the flexibility of the eddy interaction model which is 
addressed here. 

2. ANALYSIS  OF EDDY I N T E R A C T I O N  MODELS 

It is clear from the analysis of Graham & James (1996) that the decreased dispersivity of heavy 
particles is due to the constraint used within the conventional eddy models that non-fluid particles 
interact with a given eddy for a time not exceeding what has come to be called the eddy lifetime. 
It should, however, be noted that this "eddy lifetime" is in fact the interaction time for a fluid 
particle. In the following discussion, the term "eddy lifetime" is avoided in favour of the term "fluid 
particle interaction time", which is denoted as Tf. Within current eddy interaction models, the 
interaction time for non-fluid particles is often less than Tf, since the particle has frequently crossed 
the eddy within Tf. The modified eddy interaction model considered below allows the interaction 
time to exceed Tf and the relationship between Lagrangian and Eulerian integral scales is 
determined for the new method. 

For  simplicity, the analysis of the models is restricted to one spatial dimension. The constant 
fluid particle interaction time Tf is chosen to be twice the Lagrangian integral time scale of 
the turbulence rL. Choosing Tf in this way ensures that the Lagrangian integral time scales of 
the actual and model turbulence are equal. This ensures that the dispersion coefficient of fluid 
particles is predicted correctly. The constant eddy length Le is chosen to be twice the Eulerian 
longitudinal integral length scale, AE. This choice of eddy length ensures that the longitudinal 
length scales of the actual and model turbulence are equal. The reader is referred to Graham 
& James (1996) for a more complete discussion of length and time scales in eddy interaction 
models. 

2.1. Eddy interaction model specifications 

In this section, a modification to the eddy interaction model is proposed. Present eddy interaction 
models assume that the eddy interaction time is determined as the minimum of  Tf and the eddy 
"crossing time" (see Gosman & Ioannides 1981). The modified method assumes that the maximum 
interaction time is equal to some value Tmax, independently of Tf. The conventional eddy interaction 
model is retrieved by setting Tmax = Tf. The eddy interaction time is determined by 

(1) if [Ur[ < Le/zr, particle is captured, set t i = Tf---- 2 r  L 

(2) otherwise, t o=- -Zr lOg( l -Le / lu rk r ) ,  and t i= min(Tmax, tc). 

In the above, ur is the fluid-particle relative velocity at the beginning of an eddy interaction, r~ is 
the particle relaxation time, Le is the eddy length and ZL is the Lagrangian integral time scale of 
the simulated turbulence. 

2.2. Eulerian time auto-correlations 

In order to proceed with the analysis, we first note that the fluid velocity auto-correlation along 
a non-fluid particle path can be found using the method of Wang & Stock (1992). The interaction 
time t i can be considered to be a random variable. Graham & James (1996) developed the ideas 
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of Wang & Stock (1992) to determine RF(z) from eddy interaction models. Using this analysis, 
it can be shown that the auto-correlation function is given by 

I tTmax f .... (L°'C) 2h(ur)durdt, 
i Jill j0 Ivl ~< Tmax 

RF(z)= ~ ( .... ,Le.C) 2h(ur)durdt, [2] 

lo otherwise 

In [2], h(ur) is the p.d.f, of the fluid-particle relative velocity ur (equal to the fluid velocity in the 
case of an infinitely heavy particle, i.e. a fixed point) and um,x(Le, t') is the maximum relative 
fluid-non-fluid velocity such that the time taken for the non-fluid particle to cross an eddy of length 
Le is greater than t' (see Graham & James 1996), 

L, 
Umax(Ze, t') -- Vr(1 __ e_,,/.,). [31 

Eulerian (fixed-point) correlations are determined by allowing z, to approach infinity, so that 
U m a x ( L e ,  t')--*L~/t'. In this case, the Eulerian time correlation is given by 

f f 2h(u~)durdt' 
Jill JO 

RE(C) = T,.ax ~o/,' Izl ~< Tmax 
2h (u,) dur dt '  [4] 

d0 J0 

0 otherwise 

As noted above, the relative velocity u~ is equal, in the case of a fixed point, to the fluid velocity 
uf, so that h(u~) is then the p.d.f, of the fluid velocity h(uf). The most common fluid velocity 
distribution used in the literature (Gosman & Ioannides 1981; Shuen et al. 1983; Govan et al. 1989, 
is the normal distribution with mean zero and standard deviation u'. In this case, 

• 'Le /TmaxUf  Zmaxe t~x"2 ZmaxU// Izlerf( -x/r-22 Izlu J 

RE(Z) = ~ L__~e_,/2~,r/,)2dur+Tmaxer~( ~ L , , ~  ' Izl~< Tm"x 
o/rr.ax Uf TmaxU / 

0 otherwise [5] 

The Eulerian temporal auto-correlation function RE(C) therefore depends upon the eddy length Le 
and the maximum interaction time Tm,~ and is independent of the fluid particle interaction time 
Tr. Equation [5] has been evaluated using 64-point Gauss-Legendre numerical integration for three 
different values of Tmax and for three different values of the turbulence structure parameter defined 
as fl = U'ZL/AE = u'T~/Le, which represents the ratio of the Lagrangian and Eulerian (longitudinal) 
length scales. The auto-correlations resulting from the choice of Tm~x = ZL, 2Zl and 2.8re for 
fl = 0.36, 1 and 2 are illustrated in figure l(a) (for/3 = 0.36), (b) (for fl = 1) and (c) (for fl = 0.36). 
The choice of constant Tr leads to the linear Lagrangian auto-correlation function illustrated in 
figure l(a)-(c). It is interesting to note that, for each value of/3 used, the Eulerian auto-correlation 
resulting from use of the "standard" eddy interaction model obtained by setting Tmax equal to the 
fluid particle interaction time Tr is always exceeded by the Lagrangian auto-correlation. This result 
is predicted by the analysis of Graham & James (1996). When flTmax/Tr is small, the first terms in 
both the numerator and denominator of [5] become small, resulting in a linear auto-correlation 
function [see figure l(c)], which is independent of the eddy length. In general, however, the 
auto-correlation is not linear and does depend upon L,. With Tm~x = 2-8ZL, for all values of ~, it 
is clear that the Eulerian integral time scale (which is the area under the Eulerian auto-correlation) 
is significantly greater than the Lagrangian time scale. 
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Figure 1. Eulerian temporal auto-correlation functions for various Tma x. (a) fl = 0.36, (b) fl = 1.0 and (c) 
fl =2.0. 
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Dimensionless Eulerian Integral Time Scale 
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Figure 2. Dependence of Eulerian integral time scale upon maximum interaction time for various values 
of ft. 

2.3. Eulerian integral time scales 
Eulerian integral time scales are determined by integration of [4] 

- - - ] r l  2h(ur)duf+ (Tmax - I r l )  2h(uf)duf fTmax IL°/'~I ( L° 
r E  = JLe/Tma~ k uf dr. [61 

,)o ~L ~ L_2e2h(uf) dur+ Tmax f:c/rm=x2h(uf)duf 
e/Tmax Uf 

Numerical integration must also be used to determine the relationship between rE and Tmax- The 
relationship between rE and Tmax is illustrated for various values of fl in figure 2. When flTm~x/Tr 
is small, rE is equal to Tmax/2 , independently of the eddy length. Generally, however, since the 
auto-correlation is not linear and rE depends upon both Tmax and Le. The figure can be used to 
determine the appropriate value of Tma X to lead to a specified ratio of Lagrangian and Eulerian 
time scales. Supposing that, for example, following Pismen & Nir (1978), it was required to choose 
Tma x such that r E / r  L ~ 1.4. Pismen & Nir's analysis leads to a value of fl of approximately 0.36. 
From figure 2, the appropriate value of Tm,x is approximately 2 .8 r  L. The corresponding value of 
Tmax/rL to give r E / r  E = 1 is approximately 2z L . Using the modified eddy interaction model, any 
required value for the ratio of Lagrangian to Eulerian time scales can be specified for any given 
value of the turbulence structure parameter ft. 

3. N U M E R I C A L  SIMULATIONS 

The analysis modified eddy interaction models in section 2 of this was concerned with infinitely 
massive particles, leading to fixed-point Eulerian correlations. In practice, of course, eddy 
interaction models are used to simulate the dispersion of particles of finite mass. It is therefore of 
interest to determine the influence upon the dispersion of finite particles of the modifications 
considered in section 2. To this end, a series of numerical simulations has been performed to 
evaluate the dispersion of finite particles undergoing Stokesian drag in homogeneous isotropic 
turbulence. The method used is similar to that used in Graham & James (1996), to which the reader 
is referred for further details of numerical simulations. In each case, 20,000 particles were used, 
the fluid velocities followed the normal distribution and the total length of the numerical simulation 
was 2500 rL. Three values of the maximum interaction time and three values of the turbulence 
structure parameter have been investigated. Dimensionless long-time dispersion coefficients 
/~p/Ut2rL are plotted as functions of particle Stokes number r,/rL in figure 3(a) (for fl = 0.36), (b) 
(for fl = 1) and (c) (for fl = 0.36) for Tmax = rL, 2rL and 2.8r L . Figure 3(a) also illustrates the results 
from the analysis of Pismen & Nit (1978), which assumes a value for fl equal to 0.36. 
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Non-Dimensional Dispersion Coefficient 
1.6 (a) 
1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0.1 

.... Tmax=1.0 

-- -Tmax=2.0 

..... Tmax=2.8 

- -P ismen & Nir 

__ . - : - _ : _ : : _ - . : : : _ _  . . . . . . . . . . . . . . . . . . . . . . .  

i i i I I i i t I I I I i i i i 

I 10 

Particle Stokes Number 

i i i h 

100 

Non-Dimensional Dispersion Coefficient 
1.6 

1.4 

1.2 

1 = 

0 . 8 -  

0.6 

0.4 

0.2 

0 
0.1 

(b) 

. . . . . . . . . . . . .  : : : : - : : : : : : : : : : : . : :  . . . . . . . . . . . . . . . . . . . . . . . . .  

...... Tmax= 1.0 ...................................................... 

- - -Tmax=2.0 

..... Tmax=2.8 
i ~ I i I I t i t I I I I I J I I 

1 10 

Particle Stokes Number 

I i I ~ i 

IO0 

Non-Dimensional Dispersion Coefficient 
1.6 (c) 
1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0.1 

- I  ...... Tmax= l .0  

- / .__Tmax=2,0 

- [ ..... Tmax=2.8 
i i I I i I i i i i I I I [ I I i i J I I I I J I I 

1 10 100 

Particle Stokes Number 

Figure 3. Long-time dispersion coefficients vs particle Stokes number for various Tm~x. (a) ~ = 0.36, (b) 
/Y = 1.0 and (c) fl = 2.0. 
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It is clear from figure 3(a)-(c) that the computed dispersion coefficients are dependent upon 
both the Stokes number and the ratio TE/ZL (which is determined in each case by the 
maximum interaction time). In addition, by comparing the results for a given value of T,,~x 
but with different values of /3, the dispersion coefficients can also be seen to depend upon 
the turbulence structure parameter. For each value of/3 and Tn,,x, the dispersion coefficient of 
fluid particles (zr~0) is predicted correctly. This is an important feature since the method 
must certainly function properly for fluid particles, independently of the eddy length and the 
maximum interaction time. For a given value of fl, the particle dispersion coefficient is equal 
to the dispersion coefficient of fluid particles over a range of Zr/ZL. Above a certain value of the 
Stokes number Tr/z L (which appears from the results to be close to 1//3ZL), the particles appear to 
lose their "fluid-like" quality and the particle dispersion coefficient differs from that of fluid 
particles. 

In each case, the ratio/3p//~f for the heaviest particles (Z,/ZL = 50) is close tO the ratio ZE/ZL found 
using figure 2. The case Tm~x = 2ZL, corresponds to the "standard" eddy interaction model where 
the maximum interaction time is equal to the fluid particle interaction time Tr. In this case, the 
dispersion coefficient for the heaviest particles is always slightly less than 1. 

For the case/3 = 0.36, for this value of Tmax, the relationship between dispersion coefficient and 
relaxation time follows qualitatively the same form as the results of Pismen & Nir (1978). The 
agreement with Pismen & Nir's results is excellent for fluid-like "low-inertia" particles (Zr/ZL < 0.2) 
and for "high-inertia" particles (Zr/ZL> 10). The dispersion coefficient for particles in the 
"mid-inertia" range are under-predicted compared with Pismen & Nir's results. However, even in 
this range, the predicted dispersion coefficients are always within approximately 15% of the 
analytical results. The simulations show that, by choosing the correct eddy length Le, fluid particle 
interaction time Tf and maximum interaction time Tma~ so that the Eulerian longitudinal integral 
length scale AE and the Eulerian and Lagrangian integral time scales (ZE and ZL, respectively) in 
the simulated turbulence are equal to those in the actual turbulence, the eddy interaction model 
can lead to very good predictions of particle dispersion. 

By a suitable choice of Tma~ > Tr, the modified eddy interaction model can therefore be used in 
practice to predict enhanced dispersion of heavy particles. By choosing Tma~ to be less than Tf, the 
dispersion coefficient for very heavy particles is less than that for fluids. This is demonstrated in 
figure 3(a)-(c) for Tma x = ~TL, in which case the dispersion coefficient of the heaviest particles is only 
approximately half of the dispersion coefficient of fluid particles, dependent on the turbulence 
structure. It should be noted that any ratio Dp/Df for heavy particles could be chosen by choosing 
the value of Tma x leading to the appropriate value of "t'E/'f L.  

4. CONCLUSIONS 

Eulerian temporal auto-correlation functions and integral time scales in eddy interaction models 
have been evaluated using numerical integration for several combinations of turbulence structure 
parameter fl = U 'ZL/A E and maximum interaction time Tma x. 

(i) By suitable choice of Tmax (which may be greater than the fluid particle interaction time 
T~, allowing non-fluid particles to interact with eddies for longer than fluid particles are 
allowed) it is possible to predetermine the ratio between the Eulerian and Lagrangian 
integral time scales. The value of Tmax required for a given ratio ZE/ZL has been shown 
to depend on the turbulence structure. 

(ii) By choosing the correct eddy length Le, fluid particle interaction time Tr and maximum 
interaction time ?'max so that the Eulerian longitudinal integral length scale and the 
Eulerian and Lagrangian integral time scales in simulations of turbulent flows are equal 
to those in the actual turbulence, the modified eddy interaction model can lead to very 
good predictions of particle dispersion. 

(iii) Using a suitably large maximum interaction time, it is possible to ensure that heavy 
particles disperse more rapidly, in the long term, than fluid particles. Use of a suitably 
small Tmax ensures that fluid particles disperse more rapidly than heavy particles. 
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